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Abstract. The Fermi surface geometry and the electrical resistivity have been calculated 
in the framework of the fully relativistic Korringa-Kohn-Rostoker coherent potential 
approximation (KKR CPA) for a series of Cu-Pt alloys. Bloch spectral functions have 
been used to determine the position of the Fermi surface in various directions in k-space 
and to discuss band structure like behaviour. This information served as input data for 
the electrical resistivity calculation by means of a formula derived from the Boltzmann 
equation. The calculated electrical resistivities and the experimental data agree with each 
other very well. 

1. Introduction 

The coherent potential approximation (CPA) is a powerful and reliable tool in studying 
the electronic structure of substitutionally disordered alloys. In particular, the K K R  
version of the CPA dealing with muffin-tin Hamiltonians yields good results for a wide 
range of alloys. The relativistic extension of the K K R  CPA has lifted the restriction of 
the CPA to light elements and allows treatment of alloys containing heavy elements like 
platinum. 

In this paper, we present fully relativistic K K R  CPA calculations for Cu-Pt alloys. 
These are particularly interesting, because a disordered FCC phase exists over the whole 
range of composition (metastable phase), and additionally two different ordered phases 
(Hansen and Anderko 1958) in the concentration range 10 at.% < xcu < 71 at.% 
(L1,-type) and 71 at.% < xcu < 90 at.% (L1,-type). Both disordered and ordered 
phases can be prepared by special thermal and mechanical treatment (Banhart et al 
1988b, 1989b). 

The CPA can only account for the disordered state. The case of short-range order 
(SRO) or long-range order (LRO) has to be investigated with different methods. The 
embedded cluster method (ECM) based on the CPA was successfully applied to the Cu- 
Pt system, in order to interpret alloy properties related to the Fermi energy (Banhart 
et al 1988a, 1988c) and the complete valence energy regime (Banhart et a1 1989b) in 
previous publications. These papers show that the methods based on the CPA produce 
good and reliable results. In this paper, we discuss k-space-related properties for the 
disordered state, such as the Fermi surface and the electrical resistivity. 
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2. Theory 

The relativistic CPA equations (Staunton et al 1980) were solved for an angular momen- 
tum up to l,,, = 2. The Brillouin-zone integration of the K K R  matrix was carried out 
using 21 special directions (Fehlner and Vosko 1976) and between 30 and 900 k-points 
per direction. For the iterative solution of the CPA equations, the application of the 
Mills iteration scheme to the K K R  CPA (Ginatempo and Staunton 1988) was used. The 
Fermi energy was determined by use of Lloyd’s formula for the integrated density of 
states (Staunton et a2 1980). All calculations were based on site potentials according 
to the Mattheiss description and on experimental lattice constants (Linde 1937). Once 
the KKR CPA equations had been solved, relativistic Bloch spectral functions were 
calculated (Weinberger et a2 1982). Varying k for fixed energy E ,  the Fermi surface 
and the electrical resistivity can be determined. Varying E for fixed k, alloy properties 
related to the band structure can be discussed. 

The electrical resistivity can be calculated using a formula derived from Boltzmann’s 
equation (Rossiter 1987). Within this approach, the complicated full Boltzmann 
equation is first transformed to the linearised Boltzmann equation on the assumption of 
microreversibility and only small deviations of the electronic distribution function from 
the equilibrium distribution function (Fermi distribution). Then exponential relaxation 
of the non-equilibrium distribution into equilibrium is applied to the scattering term 
(relaxation time approximation). Note that this approximation neglects the ‘scattering- 
in’ terms in the Boltzmann equation. Also the existence of electronic states with well 
defined band indices n and k is required within this approximation, which implies the 
existence of a dispersion relation for the electrons. The resulting simplified equation 
can be used to calculate the proportionality between the electrical field E and the 
current density j (electrical conductivity tensor). For cubic crystal symmetry there is 
only one scalar component of the conductivity cr, which is the inverse of the resistivity 
p (Rossiter 1987): 

In equation (1) I(k,) is the electronic quasi-particle mean free path at the Fermi energy. 
Figure 1 shows how this quantity is determined using Bloch spectral functions. The 

~ \ i  

Figure 1. Schematical representation of the various quantities involved in the calculation 
of [ ( k ~ ) .  The broken curves indicate the halfwidth of the Fermi surface (FS) determined 
from Bloch spectral functions in the direction e. n~ is the unit vector orthogonal to the FS. 
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Bloch spectral function in the special direction e, A,(ke, E,), is approximated by a 
Lorentzian a + bk + c / [ ( k  - + y2]. The k ,  localises the Fermi surface position and 
y determines the half width of the smeared surface in this particular direction. Now 
l(k,) is the inverse of the width along the normal unit vector onto the Fermi surface 
nF so 2(ye) . nF = l(kF)-I.  Using this formula, l (k , )  can be determined from the Bloch 
spectral functions (Butler and Stocks 1984). 

The surface integral in equation (1) was calculated using 136 directions in the 
irreducible wedge of the FCC Brillouin zone. In some cases, the directions cut through 
two or three sheets of the Fermi surface so that two or three Lorentzians had to be 
used to fit the Bloch spectral functions. 

3. Results and discussion 

3.1. Band structure 

For a first survey of the location of the energy bands in the Cu-Pt alloys, we calculated 
the band structure of a fictitious FCC lattice consisting of only Cu or Pt atoms with 
the potentials and the lattice constant of a Cu,,Pt,, alloy. The resulting band structure 
is shown in figure 2 for the T-X direction. The Fermi energy of the alloy as calculated 
within the CPA framework cuts through the Pt d band while it is well above the Cu d 
bands. This indicates a quite different behaviour of the two components’ densities of 
states at this energy (Banhart 1989). 
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Figure 2. Band structure of a fictitious FCC lattice occupied by either the Cu (left-hand 
side) or Pt (right-hand side) potentials of C&jOPt40 (with the lattice constant of the alloy). 
Full curve: &-symmetry, broken curve: A7-symmetry. 

3.2. Constant-k Bloch spectral functions 

The band structures in figure 2 serve well in interpreting the Bloch spectral functions 
at the r point shown in figure 3 for two alloys. For the Pt-rich alloy Cu15Pt,5 we 
see three distinct peaks. They can easily be related to the r8+,r7+,r8+ states of Pt in 
figure 2. The same behaviour can be seen for the Cu-rich alloy CU85Pt1, where also 
three peaks occur which can be identified as the analogous states of Cu at the r point. 
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Figure 3. Bloch spectral functions A B  for k = (O,O,O). Left: Cul5Pts5, right: Cu8SPtiS. 
Vertical line: Fermi energy. 

While the Bloch spectral functions do not really define bands in the sense of a 
well defined dispersion relation, they nevertheless seem to be well localised and fairly 
narrow, and can therefore be interpreted as lifetime broadened, smeared quasi-bands. 

3.3. Constant-E Bloch spectral functions 

An observation similar to that in the preceding paragraph can be made for constant- 
energy Bloch spectral functions at E = E,  and varying k .  Figure 4 shows two examples 
with compositions as in figure 3. Again rather sharp and localised Lorentzian peaks 
occur. We therefore tried to fit Lorentzian model functions to the set of calculated 
values of the Bloch spectral function (triangles in figure 4). Apparently, the fit can 
be done very well so that a definite position and width can be assigned to the Bloch 
spectral function. Again we can argue that-especially in the Cu-rich alloys---a kind of 
quasi-band structure is defined. This enables us to define Fermi surface sheets and to 
make use of the Boltzmann equation for the calculation of the electrical resistivity. The 
position of the maxima of the Bloch spectral functions in figure 4 is the position of the 
Fermi surface sheet in this specific direction. By evaluating Bloch spectral functions in 
this way for a set of special directions which span two planes in the first Brillouin zone 
we arrive at a representation of the Fermi surface as Fermi surface cuts. 

These cuts are shown in figure 5. For comparison, the Fermi surfaces of the pure 
metals Pt (Andersen 1970) and Cu (MacDonald et a1 1982) have been included in this 
figure. Pure Cu has the well known Fermi surface with the wide neck in the [ l l l ]  
direction (L point). When Pt is alloyed to Cu, the Fermi surface begins to shrink due 
to the reduction of the number of electrons. This occurs everywhere on the surface 
and especially in the L and K directions. As a consequence, the [ l  111 neck becomes 
narrower, and the Fermi surface in the [110] direction (K point) gradually looses its 
curvature and flattens out. Additionally, the width of the Fermi surface increases with 
increasing Pt content. In CusoPt,,, a second sheet of the Fermi surface can be seen 
developing around the X point and growing towards the W and K points and towards 
the U and L points with increasing Pt concentration. In the equiatomic alloy, the largest 
smearing of the inner sheet of the surface occurs. For even higher Pt concentrations 
this sheet starts to narrow again. In Cu30Pt,,, the [ill] neck has disappeared, and the 
corresponding sheet moves inwards for even higher Pt concentrations. For 15 at.% 
Cu, the second sheet of the Fermi surface has reached the K and L points and a third 
sheet develops between the L and U points and around the X point. For 5 at.% Cu 
the situation is very much like that in pure Pt. The inner sheet of the Fermi surface is 
already very narrow, the outer sheets resemble the corresponding sheets in pure Pt. 
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Figure 4. Bloch spectral functions A B  for 
E = EF in a special direction e. (a): 
CU85Ptl5, e = (0.073,0,1); ( b ) :  CUl5Ptg5, 
e = (0.271, -0.03,0.962). The triangles are 
the calculated values. A Lorentzian func- 
tion is fitted to each peak by a least square 
approximation shown as a full curve. The 

0 0.2 0.4 0.6 0.8 1.0 maximum positions and Brillouin zone 
positions are indicated as vertical lines. k 

Local-order diffuse electron scattering experiments can reveal Fermi surface effects 
under certain conditions. It has been shown (Moss 1969) that in the directions where 
the Fermi surface is narrow and has a low curvature, multiply split scattering spots 
occur, the separation of which is related to the length of the Fermi vector in the 
specific direction. Looking at figure 5 it seems probable that the effect may occur 
in the K direction [110] for Cu-rich alloys. Indeed the effect has been observed 
for a number of Cu-Pt alloys (Oshima and Watanabe 1973, Chevalier and Stobbs 
1979). In figure 6 the Fermi vectors kl10  in the [110] direction derived from the 
experimental data are compared with the calculated ones. The length of k , , ,  increases 
monotonously with Cu concentration both for the theoretical and experimental values. 
However, the experimental values are larger by about 5 to 7% than our calculated 
ones. This deviation is not very large, so we state that the agreement between theory 
and experiment is satisfactory. 

An interesting fact about the Fermi surfaces is that for all compositions the various 
sheets are well defined. This is especially true for the first sheet which contributes 
predominantly to the electrical conductivity. Thus, the evaluation of the surface 
integral in equation (1) makes sense, and the Boltzmann equation can be expected to 
yield good results for the electrical resistivity. 

3.4.  Electrical resistivity 

Since there are various sheets of the Fermi surface in Cu-Pt alloys, the integral in 
equation (1) can be written as a sum of integrals, each one referring to one particular 
sheet. Therefore, the electrical conductivity can be split into a sum of contributions 
one corresponding to each one of the three sheets. Table 1 lists the contributions for 
the various compositions and sheets. For all alloys, the first sheet contributes most 
to the electrical conductivity. This is due to the fact that the first sheet is narrower 
than the other sheets. This makes the quantity l(k,) in equation (1) large. The second 
sheet is important only in the Pt-rich alloys, contributing 41% to the conductivity 
for Cu30Pt,0. The third sheet is of minor importance. The results for the electrical 
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Figure 5. Fermi surface cuts in the planes T-X-U-L-K and T-X-W-K. The pure metal 
Fermi surfaces have also been included (Pt (Andersen 1970), Cu (MacDonald et al 1982)). 
Dots indicate maxima of the Bloch spectral functions, the contour lines indicate the 
halfwidth of the peaks The numbering refers to the numbers of the Fermi surface sheets 
in table 1. 

(residual) resistivity are shown in figure 7, which also includes experimental values 
(Linde 1937). 

Johansson and Linde published two sets of values for the disordered state (Johans- 
son and Linde 1927, Linde 1937)), one referring to cold rolled alloys, the other one 
to alloys quenched from 900°C. Both values differ from each other. However, while 
being quenched from 900°C the alloys tend to order, because the atomic mobility is 
very high at this temperature (see the experimental work on Cu-Pt by Banhart et 
a1 (1988b, 1989a). Therefore we consider the cold rolled state to be closest to the 
disordered state and compare our theoretical values with the experimental values of 
that state. For an otherwise perfect lattice only the contribution of disorder to the 
resistivity is of interest. Therefore the theoretical values for pure metals are zero by 
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Figure 6. Length of k-vectors in the [110] direction, in terms of the distance T-X. Circles: 
calculated values; squares: values derived from experimental data (Oshima and Watanabe 
1973); triangle: value derived from experimental data (Chevalier and Stobbs 1979). 

Table 1. Calculated electrical conductivity of Cu-Pt. For each sheet the calculated value 
(units: lo6 S m-I) and its relative contribution to the sum (in %) is given. 

at.% Cu First sheet Second sheet Third sheet Sum 

0 
5 

15 
30 
50 
60 
65 
71 
85 

100 

- CO 

5.03 58 
1.52 57 
0.81 59 
0.90 87 
1.23 95 
1.61 98 
2.47 100 
5.69 100 
to 100 

- CO 

3.05 35 
1.04 39 
0.56 41 
0.13 13 
0.07 5 
0.03 2 
0 0 
0 0 
0 0 

- cc 
0.67 7 
0.12 4 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 
0 0 

CO 
8.76 
2.68 
1.37 
1.03 
1.30 
1.64 
2.47 
5.69 
cc 

20 40 60 80 I1 
ccu Iat.%l 

Figure 7. Electrical resistivity of Cu-Pt alloys. Circles: calculated values for the residual 
resistivity due to disorder (zero for the pure components by definition); squares: experi- 
mental values for the resistivity of a cold-rolled Cu-Pt specimen at 18°C (Linde 1937). The 
individual points have been joined for clearer representation. 

definition while the experimental values reflect other contributions to the resistivity 
like impurity scattering, lattice defects and thermal vibrations and have in general a 
non-zero value. These contributions are high (10 $2 cm) especially for pure Pt. In the 
range between 0 and 30 at.% Cu all theoretical values are lower than the experimental 
ones by about 10 pC2 cm. So one could speculate that this offset is caused by an 
extra non-disorder contribution to the experimental values in the Pt-rich alloys. The 
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maximum of the experimental resistivity around 50 at.% Cu is reproduced quite well by 
the theoretical values. On the copper rich side some disagreement between theoretical 
and experimental resistivities occurs, which is most significant around 80 at.% Cu. As 
the experimental value for Cu is very small, an explanation for the deviations between 
theoretical and experimental values similar to that for the Pt-rich alloys is not possible. 
The deviations could be linked to the use of potentials not obtained self-consistently 
in our calculations, or to a failure of the approximations made for the Boltzmann 
equation. 

4. Summary 

The description of k-space-related properties of Cu-Pt alloys by means of Bloch spectral 
functions has been shown to yield a picture of quasi-bands, quasi-states and quasi- 
Fermi surfaces. The application of the Boltzmann equation to the electrical resistivity 
results in values which are in good agreement with experimental values, in particular 
in view of the fact that no adjustable parameters enter the calculations. The question 
whether certain deviations from experiment have to be explained as an effect of the 
lack of self-consistency in the potential construction cannot be answered definitely here. 
However, the application of the same potentials in other calculations (Banhart et a/ 
1988a, c, 1989b, Banhart 1989) has shown that the Mattheiss description works rather 
well for the case of Cu-Pt. So perhaps the assumptions inherent in equation (1) limit 
the accuracy. Application of the more advanced Kubo formula to the alloy system 
(Butler 1985) could help to clarify this question. 
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